科研进展

分子筛限域传质机制研究获进展

日期: 2023-04-20

|  来源: 精密测量科学与技术创新研究院 【字号:

  日,中国科学院精密测量科学与技术创新研究院郑安民研究团队在沸石分子筛限域扩散领域取得新进展。该研究利用分子筛限域环境实现长链烷烃分子自由度的精准调控,通过分子“悬浮”效应实现其超快扩散。相关研究成果发表在《自然-通讯》(Nature Communications)上。  

  亚纳米级别的多孔材料是典型的限域反应器,其中,吸附质的物理化学性质与常规体相下有显著差异。前期研究表明,分子筛限域孔道中的扩散系数与常规体相下呈现出跨越数量级的区别。常规情况下限域孔道会抑制分子的扩散,进而影响催化剂的反应和分离效率。如何在这种限域空间中实现快速的扩散是催化和分离工艺中亟待解决的难题, 也是近年来科学家的目标。  

  该团队基于多尺度理论模拟发现,在一定孔径范围内,分子筛限域孔道中存在孔径越大长链烷烃扩散越慢的反常扩散现象。受到超级高铁运行原理的启发,科研人员建立了一系列亚纳米直孔道模型,确定了长链烷烃实现快速扩散的条件——客体分子“悬浮”在孔道正中心运行并保持线性构型(图1)。研究人员根据该模型筛选出一系列真实存在的孔径适中的分子筛(TON、MTW、AFI和VFI),验证了这一理论模型的正确性。进一步,研究基于主客体相互作用、弯曲角度、扩散轨迹和扩散自由能分析(图2),揭示了调控长链分子自由度达到分子“悬浮”的条件从而实现超快扩散的微观机理。该团队进一步与中科院大连化学物理研究所叶茂团队合作,基于吸附速率法扩散实验验证了分子筛中长链烷烃的超快扩散行为。在TON、MTW和AFI分子筛中短链(C4)和长链烷烃(C12)的扩散趋势与孔径呈现出完全相反的状态:短链烷烃的扩散系数随着孔径的增大而增加,而长链烷烃的扩散系数随着孔径的增大而减小。该工作利用红外实验验证了不同孔径中长链分子的形变差异(小孔径中分子形变较小,大孔径与之相反),这与分子动力学模拟的结论一致,揭示了线性长链烷烃在限域孔道中的超快扩散机制。  

  本工作根据超级高铁的运行原理结合限域分子的扩散“悬浮”效应,设计出长链烷烃的超快扩散模型,将其推广到分子筛筛选体系中,并结合理论和实验证实了该模型的可行性和准确性。这为限域孔道中长链分子的扩散调控提供了新视角,也为分子筛的设计和筛选提供了理论指导。研究工作得到科技部和国家自然科学基金的支持。   

  论文链接 

长链烷烃的“超级高铁式”扩散机理

不同类型孔道中长链烷烃吸附结构特性和扩散性能     

附件: